

Tijera antichispa

ENDRES TOOLS

Características

Las herramientas **ENDRES** son **antichispas**, **antimagnéticas y muy resistentes a la corrosión**. Se fabrican con una **aleación** (aluminio-bronce especial, cobre-berilio), y están homologadas por los pertinentes organismos oficiales de investigación de materiales.

Los moldes y los controles de calidad de las herramientas cumplen las normas DIN. Nuestro alto nivel de calidad se consigue y mantiene gracias a dichos programas de control de calidad.

Gama del Artículo

Cada herramienta se ha estudiado para utilizarla y ser fabricada con el material más adecuado para su mejor rendimiento y máxima duración.

Aluminio - Bronce especial (Última letra del código: S)

Cobre - Berilio 2 (Última letra del código: C)

Código	Unid.	Hoja (mm)	L (mm)	Peso unit. en gramos	
EN0712000C	1	100	220	220	

Si necesita cualquier herramienta antichispa que no se encuentra en este catálogo no dude en consultarnos.

CLASIFICACIÓN DE ATEX DE ALTO RIESGO

LAS ATMÓSFERAS EXPLOSIVAS - ATEX

ATEX es una mezcla con aire, en condiciones atmosféricas, de sustancias inflamables en forma de gas,vapor, nube o polvo en las cuales después de una inflamación, la combustión se propaga al resto del entorno.

Todas las empresas que utilizan substancias inflamables tienen un gran riesgo de explosión y están englobadas en la reglamentación **ATEX.**

Material Aluminio - Bronce especial

Cobre - Berilio 2

(Endres)	(Última letra del código: S) (Última letra del código: C)									
Análisis	Al	Ni	Fe	Mn	Cu	Ве	Ni	Co	Cu	
% min.	8	4	4	-	Resto	1,8	0,1	0,4	Resto	
% max.	10,5	6	5,5	1,33	Resto	2,3	0,5	0,7	Resto	
	PR	OPIEDADES	S MECÁNICA	S						
Resistenci a a la tracción	780 - 989 N/mm2					1110 - 1325 N/mm2				
Límite Elástico	450 - 550 N/mm2					840 - 860 N/mm2				
Dureza Brinell	230 / 290 HB					280 / 365 HB				
	PRO	PIEDADES	FÍSICAS							
Peso específico	8.45 g/cm3					8.26 g/cm3				
Magnetis mo	1,35 max.					1,005 T max.				
Indice de dilatación de 20-200°C	0,000015 %					0,000012 %				
Conductiv idad eléctrica	8/12 S/m					8/6 S/m				

www.acha.com